Stability of power-law discs -- I. The Fredholm integral equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Power-Law Disks I – The Fredholm Integral Equation

The power-law disks are a family of infinitesimally thin, axisymmetric stellar disks of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law disks are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. Whil...

متن کامل

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

Fredholm-volterra Integral Equation with Potential Kernel

A method is used to solve the Fredholm-Volterra integral equation of the first kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) : √ x2+y2 ≤ a}, z = 0, and T <∞. The kernel of the Fredholm integral term considered in the generalized potential form belongs to the class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous function that belongs to the class C[0,T ]. Also in...

متن کامل

Numerical Solution of the Nonlinear Fredholm Integral Equation and the Fredholm Integro-differential Equation of Second Kind using Chebyshev Wavelets

Abstract: In this paper, a numerical method to solve nonlinear Fredholm integral equations of second kind is proposed and some numerical notes about this method are addressed. The method utilizes Chebyshev wavelets constructed on the unit interval as a basis in the Galerkin method. This approach reduces this type of integral equation to solve a nonlinear system of algebraic equation. The method...

متن کامل

A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation

In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 1998

ISSN: 0035-8711,1365-2966

DOI: 10.1046/j.1365-8711.1998.01863.x